Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Neurol Neurosurg Psychiatry ; 94(8): 605-613, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20238777

ABSTRACT

To explore the autoimmune response and outcome in the central nervous system (CNS) at the onset of viral infection and correlation between autoantibodies and viruses. METHODS: A retrospective observational study was conducted in 121 patients (2016-2021) with a CNS viral infection confirmed via cerebrospinal fluid (CSF) next-generation sequencing (cohort A). Their clinical information was analysed and CSF samples were screened for autoantibodies against monkey cerebellum by tissue-based assay. In situ hybridisation was used to detect Epstein-Barr virus (EBV) in brain tissue of 8 patients with glial fibrillar acidic protein (GFAP)-IgG and nasopharyngeal carcinoma tissue of 2 patients with GFAP-IgG as control (cohort B). RESULTS: Among cohort A (male:female=79:42; median age: 42 (14-78) years old), 61 (50.4%) participants had detectable autoantibodies in CSF. Compared with other viruses, EBV increased the odds of having GFAP-IgG (OR 18.22, 95% CI 6.54 to 50.77, p<0.001). In cohort B, EBV was found in the brain tissue from two of eight (25.0%) patients with GFAP-IgG. Autoantibody-positive patients had a higher CSF protein level (median: 1126.00 (281.00-5352.00) vs 700.00 (76.70-2899.00), p<0.001), lower CSF chloride level (mean: 119.80±6.24 vs 122.84±5.26, p=0.005), lower ratios of CSF-glucose/serum-glucose (median: 0.50[0.13-0.94] vs 0.60[0.26-1.23], p=0.003), more meningitis (26/61 (42.6%) vs 12/60 (20.0%), p=0.007) and higher follow-up modified Rankin Scale scores (1 (0-6) vs 0 (0-3), p=0.037) compared with antibody-negative patients. A Kaplan-Meier analysis revealed that autoantibody-positive patients experienced significantly worse outcomes (p=0.031). CONCLUSIONS: Autoimmune responses are found at the onset of viral encephalitis. EBV in the CNS increases the risk for autoimmunity to GFAP.


Subject(s)
Encephalitis , Epstein-Barr Virus Infections , Male , Humans , Female , Autoimmunity , Retrospective Studies , Herpesvirus 4, Human , Autoantibodies , Immunoglobulin G
2.
Crit Rev Oncol Hematol ; 187: 104039, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2328186

ABSTRACT

Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.


Subject(s)
Erythrocytes , Immune System , Humans , Phagocytosis , Oxygen
3.
J Mater Chem B ; 11(10): 2095-2107, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2286487

ABSTRACT

The success of mRNA vaccines for COVID-19 prevention raised global awareness of the importance of nucleic acid drugs. The approved systems for nucleic acid delivery were mainly formulations of different lipids, yielding lipid nanoparticles (LNPs) with complex internal structures. Due to the multiple components, the relationship between the structure of each component and the overall biological activity of LNPs is hard to study. However, ionizable lipids have been extensively explored. In contrast to former studies on the optimization of hydrophilic parts in single-component self-assemblies, we report in this study on structural alterations of the hydrophobic segment. We synthesize a library of amphiphilic cationic lipids by varying the lengths (C = 8-18), numbers (N = 2, 4), and unsaturation degrees (Ω = 0, 1) of hydrophobic tails. Notably, all self-assemblies with nucleic acid have significant differences in particle size, stability in serum, membrane fusion, and fluidity. Moreover, the novel mRNA/pDNA formulations are characterized by overall low cytotoxicity, efficient compaction, protection, and release of nucleic acids. We find that the length of hydrophobic tails dominates the formation and stability of the assembly. And at a certain length, the unsaturated hydrophobic tails enhance the membrane fusion and fluidity of assemblies and thus significantly affect the transgene expression, followed by the number of hydrophobic tails.


Subject(s)
COVID-19 , Membrane Fusion , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , COVID-19 Vaccines , Cations/chemistry , Lipids/chemistry
4.
Int J Environ Res Public Health ; 20(4)2023 Feb 11.
Article in English | MEDLINE | ID: covidwho-2270132

ABSTRACT

Despite the growing research base examining the benefits and physiological mechanisms of slow-paced breathing (SPB), mindfulness (M), and their combination (as yogic breathing, SPB + M), no studies have directly compared these in a "dismantling" framework. To address this gap, we conducted a fully remote three-armed feasibility study with wearable devices and video-based laboratory visits. Eighteen healthy participants (age 18-30 years, 12 female) were randomized to one of three 8-week interventions: slow-paced breathing (SPB, N = 5), mindfulness (M, N = 6), or yogic breathing (SPB + M, N = 7). The participants began a 24-h heart rate recording with a chest-worn device prior to the first virtual laboratory visit, consisting of a 60-min intervention-specific training with guided practice and experimental stress induction using a Stroop test. The participants were then instructed to repeat their assigned intervention practice daily with a guided audio, while concurrently recording their heart rate data and completing a detailed practice log. The feasibility was determined using the rates of overall study completion (100%), daily practice adherence (73%), and the rate of fully analyzable data from virtual laboratory visits (92%). These results demonstrate feasibility for conducting larger trial studies with a similar fully remote framework, enhancing the ecological validity and sample size that could be possible with such research designs.


Subject(s)
Respiration , Wearable Electronic Devices , Humans , Female , Adolescent , Young Adult , Adult , Feasibility Studies
5.
Ther Innov Regul Sci ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2282752

ABSTRACT

BACKGROUND: In the past decade, the Chinese drug regulatory system has undergone many changes. A major reform starting in 2015 has significantly reshaped the regulatory processes. It was important to assess the impact of the reform on new drug approvals in China. METHOD: We analyzed the temporal trends of regulatory characteristics of the new drugs approved by the Chinese regulatory agency from 2011 to 2021, using data collected in the Pharmcube database. RESULTS: A total of 353 new drugs were approved, including 220 small molecule drugs, 86 biological products and 47 vaccines. The annual number of new drug approvals increased dramatically since 2017, reaching a record high of 70 in 2021. The median NDA approval time was 15.4 months in 2017-2021, the shortest in the decade, and was significantly shorter than that in the pre-reform period. The newly instituted expedited pathways such as priority review (PR) and accelerated approval for urgently needed overseas drugs (UNOD) significantly reduced new drug application (NDA) approval times compared with standard review. For imported drugs, in 2017-2021, the median time difference between the first approval in the world and the approval in China was 5 years, representing significant "drug lag". However, the proportion of the imported drugs approved in China within 3 years of its first foreign approval has increased to 24.4% in 2017-2021. CONCLUSION: The regulatory reform has produced significant, positive immediate outcomes in several metrics of drug regulatory approval. China's regulatory system will continue to evolve as there still are many areas requiring further reform and improvement.

6.
Mult Scler Relat Disord ; 58: 103394, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-2228485

ABSTRACT

Neuromyelitis optica spectrum disorders (NMOSDs) are uncommon antibody-mediated autoimmune diseases of the central nervous system (CNS), mainly occurring in optic nerves and spinal cord, which can cause visual impairment, paralysis, and occasionally bulbar dysfunction. Such neurological deficits can adversely affect pulmonary functions and increase complicated infection risk. Besides, most NMOSD patients undergo immunosuppressive therapy. All these factors make NMOSD patients the potential high-risk group under the current pandemic of coronavirus disease 2019 (COVID-19). Meanwhile, COVID-19 infection has already been demonstrated as a risk factor for NMOSD relapses. This review discusses the basic immunology of vaccination and common problems, including immunogenicity, safety, and efficacy of vaccination on NMOSD patients. Additionally, we offered vaccination recommendations, health care and treatment advice for NMOSD patients under the background of COVID-19.


Subject(s)
COVID-19 , Neuromyelitis Optica , COVID-19/prevention & control , Humans , Neuromyelitis Optica/complications , SARS-CoV-2 , Spinal Cord , Vaccination/adverse effects
7.
Scand J Trauma Resusc Emerg Med ; 28(1): 106, 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-2098375

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) is a global public health emergency. Here, we developed and validated a practical model based on the data from a multi-center cohort in China for early identification and prediction of which patients will be admitted to the intensive care unit (ICU). METHODS: Data of 1087 patients with laboratory-confirmed COVID-19 were collected from 49 sites between January 2 and February 28, 2020, in Sichuan and Wuhan. Patients were randomly categorized into the training and validation cohorts (7:3). The least absolute shrinkage and selection operator and logistic regression analyzes were used to develop the nomogram. The performance of the nomogram was evaluated for the C-index, calibration, discrimination, and clinical usefulness. Further, the nomogram was externally validated in a different cohort. RESULTS: The individualized prediction nomogram included 6 predictors: age, respiratory rate, systolic blood pressure, smoking status, fever, and chronic kidney disease. The model demonstrated a high discriminative ability in the training cohort (C-index = 0.829), which was confirmed in the external validation cohort (C-index = 0.776). In addition, the calibration plots confirmed good concordance for predicting the risk of ICU admission. Decision curve analysis revealed that the prediction nomogram was clinically useful. CONCLUSION: We established an early prediction model incorporating clinical characteristics that could be quickly obtained on hospital admission, even in community health centers. This model can be conveniently used to predict the individual risk for ICU admission of patients with COVID-19 and optimize the use of limited resources.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Hospitalization , Intensive Care Units , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Adult , Aged , COVID-19 , China , Coronavirus Infections/diagnosis , Female , Humans , Logistic Models , Male , Middle Aged , Nomograms , Pandemics , Pneumonia, Viral/diagnosis , Retrospective Studies , Risk Assessment , SARS-CoV-2
8.
Int J Environ Res Public Health ; 19(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071472

ABSTRACT

The outbreak of COVID-19 dramatically changed individuals' lifestyles, which in turn triggered psychological stress and anxiety. Many previous studies have discussed the relationships between lifestyle changes and anxiety and risk perception and anxiety independently. However, few papers have discussed these factors in a comprehensive and systematic manner. We established a six-dimensional system to assess changes in individuals' lifestyles, which include dietary habits, physical activity (PA), sleep, screen time, smoking and alcohol consumption, and interaction with neighbors. Then, we collected information relating to socio-demographics, lifestyle changes, risk perception, and anxiety, and discussed their associations using multilinear and stepwise logistic regressions. The results show that not all lifestyle changes had an influence on anxiety. Changes in PA and interaction with neighbors were not significantly associated with anxiety. Risk perception was found to be inversely related to anxiety. Changes in dietary habits, family harmony, and net income were negatively related to anxiety among the group with higher risk perception. As individuals perceived a higher severity of COVID-19, the impact of their financial status on anxiety increased. These findings provide a valuable resource for local governments seeking to refine their pandemic strategies by including approaches such as advocating healthy lifestyles and stabilizing the job market to improve individuals' mental health during lockdowns.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Communicable Disease Control , Anxiety/epidemiology , Life Style , Perception
9.
BMC Pulm Med ; 22(1): 343, 2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2021273

ABSTRACT

BACKGROUND: Emerging evidence shows that cardiovascular injuries and events in coronavirus disease 2019 (COVID-19) should be considered. The current study was conducted to develop an early prediction model for major adverse cardiovascular events (MACE) during hospitalizations of COVID-19 patients. METHODS: This was a retrospective, multicenter, observational study. Hospitalized COVID-19 patients from Wuhan city, Hubei Province and Sichuan Province, China, between January 14 and March 9, 2020, were randomly divided into a training set (70% of patients) and a testing set (30%). All baseline data were recorded at admission or within 24 h after admission to hospitals. The primary outcome was MACE during hospitalization, including nonfatal myocardial infarction, nonfatal stroke and cardiovascular death. The risk factors were selected by LASSO regression and multivariate logistic regression analysis. The nomogram was assessed by calibration curve and decision curve analysis (DCA). RESULTS: Ultimately, 1206 adult COVID-19 patients were included. In the training set, 48 (5.7%) patients eventually developed MACE. Six factors associated with MACE were included in the nomogram: age, PaO2/FiO2 under 300, unconsciousness, lymphocyte counts, neutrophil counts and blood urea nitrogen. The C indices were 0.93 (95% CI 0.90, 0.97) in the training set and 0.81 (95% CI 0.70, 0.93) in the testing set. The calibration curve and DCA demonstrated the good performance of the nomogram. CONCLUSIONS: We developed and validated a nomogram to predict the development of MACE in hospitalized COVID-19 patients. More prospective multicenter studies are needed to confirm our results.


Subject(s)
COVID-19 , Myocardial Infarction , Adult , Humans , Nomograms , Prospective Studies , Retrospective Studies
10.
Front Immunol ; 13: 893943, 2022.
Article in English | MEDLINE | ID: covidwho-1993787

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is exerting huge pressure on global healthcare. Understanding of the molecular pathophysiological alterations in COVID-19 patients with different severities during disease is important for effective treatment. In this study, we performed proteomic profiling of 181 serum samples collected at multiple time points from 79 COVID-19 patients with different severity levels (asymptomatic, mild, moderate, and severe/critical) and 27 serum samples from non-COVID-19 control individuals. Dysregulation of immune response and metabolic reprogramming was found in severe/critical COVID-19 patients compared with non-severe/critical patients, whereas asymptomatic patients presented an effective immune response compared with symptomatic COVID-19 patients. Interestingly, the moderate COVID-19 patients were mainly grouped into two distinct clusters using hierarchical cluster analysis, which demonstrates the molecular pathophysiological heterogeneity in COVID-19 patients. Analysis of protein-level alterations during disease progression revealed that proteins involved in complement activation, the coagulation cascade and cholesterol metabolism were restored at the convalescence stage, but the levels of some proteins, such as anti-angiogenesis protein PLGLB1, would not recovered. The higher serum level of PLGLB1 in COVID-19 patients than in control groups was further confirmed by parallel reaction monitoring (PRM). These findings expand our understanding of the pathogenesis and progression of COVID-19 and provide insight into the discovery of potential therapeutic targets and serum biomarkers worth further validation.


Subject(s)
COVID-19 , Humans , Pandemics , Proteome , Proteomics , SARS-CoV-2
11.
Mol Med ; 28(1): 57, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1846786

ABSTRACT

BACKGROUND: Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease, attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor (α7nAChR) signal transduction, to prevent cytokine storm. METHODS: The potential anti-inflammatory effects of famotidine and other H2R antagonists were assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. RESULTS: Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor (TNF) and IL-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell-dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. CONCLUSIONS: These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.


Subject(s)
COVID-19 , Famotidine , Animals , Anti-Inflammatory Agents , Cytokine Release Syndrome , Famotidine/pharmacology , Histamine , Histamine H2 Antagonists , Lipopolysaccharides , Mice , Reflex , Vagus Nerve , alpha7 Nicotinic Acetylcholine Receptor
12.
Res Sq ; 2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1786501

ABSTRACT

Background. Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease , attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor ( α7nAChR ) signal transduction, to prevent cytokine storm. Methods. The potential anti-inflammatory effects of famotidine and other H2R antagonists was assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. Results. Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor α and interleukin-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. Conclusions. These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.

13.
Nat Metab ; 4(1): 29-43, 2022 01.
Article in English | MEDLINE | ID: covidwho-1612214

ABSTRACT

Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.


Subject(s)
COVID-19/complications , COVID-19/virology , Glucose/metabolism , Hyperglycemia/etiology , Hyperglycemia/metabolism , Membrane Proteins/metabolism , SARS-CoV-2 , Animals , Biomarkers , Cyclic AMP-Dependent Protein Kinases/metabolism , Diet, High-Fat , Disease Models, Animal , Fasting , Gene Expression , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Host-Pathogen Interactions , Humans , Hyperglycemia/blood , Liver/metabolism , Liver/pathology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/blood , Membrane Proteins/genetics , Mice , Mice, Knockout , Organ Specificity/genetics
14.
J Clin Lab Anal ; 36(1): e24152, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565196

ABSTRACT

The ongoing COVID-19 pandemic constitutes a new challenge for public health. Prevention and control of infection have become urgent and serious issues. To meet the clinical demand for higher accuracy of COVID-19 detection, the development of fast and efficient methods represents an important step. The most common methods of COVID-19 diagnosis, relying on real-time fluorescent quantitative PCR(RT-qPCR), computed tomography, and new-generation sequencing technologies, have a series of advantages, especially for early diagnosis and screening. In addition, joint efforts of researchers all over the world have led to the development of other rapid detection methods with high sensitivity, ease of use, cost-effectiveness, or allowing multiplex analysis based on technologies such as dPCR, ELISA, fluorescence immunochromatography assay, and the microfluidic detection chip method. The main goal of this review was to provide a critical discussion on the development and application of these different analytical methods, which based on etiology, serology, and molecular biology, as well as to compare their respective advantages and disadvantages. In addition to these methods, hematology and biochemistry, as well as auxiliary analysis based on pathological anatomy, ultrasonography, and cytokine detection, will help understand COVID-19 pathogenesis. Together, these technologies may promote and open new windows to unravel issues surrounding symptomatic and asymptomatic COVID-19 infections and improve clinical strategies toward reducing mortality.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnostic imaging , Polymerase Chain Reaction/methods , COVID-19/pathology , Chromatography, Affinity/methods , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Four-Dimensional Computed Tomography , Gold Colloid , Humans , Mass Spectrometry/methods , Nasopharynx/virology , SARS-CoV-2/genetics
15.
Cells ; 10(12)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1551567

ABSTRACT

High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a "damage-associated molecular pattern" molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.


Subject(s)
Disulfides/metabolism , HMGB1 Protein/metabolism , Inflammation/metabolism , Protein Processing, Post-Translational , Animals , COVID-19/metabolism , Humans , Sensory Receptor Cells/metabolism
16.
Front Immunol ; 12: 748566, 2021.
Article in English | MEDLINE | ID: covidwho-1463474

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a major health challenge globally. Previous studies have suggested that changes in the glycosylation of IgG are closely associated with the severity of COVID-19. This study aimed to compare the profiles of IgG N-glycome between COVID-19 patients and healthy controls. A case-control study was conducted, in which 104 COVID-19 patients and 104 age- and sex-matched healthy individuals were recruited. Serum IgG N-glycome composition was analyzed by hydrophilic interaction liquid chromatography with the ultra-high-performance liquid chromatography (HILIC-UPLC) approach. COVID-19 patients have a decreased level of IgG fucosylation, which upregulates antibody-dependent cell cytotoxicity (ADCC) in acute immune responses. In severe cases, a low level of IgG sialylation contributes to the ADCC-regulated enhancement of inflammatory cytokines. The decreases in sialylation and galactosylation play a role in COVID-19 pathogenesis via the activation of the lectin-initiated alternative complement pathway. IgG N-glycosylation underlines the complex clinical phenotypes of SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Immunoglobulin G/metabolism , SARS-CoV-2/physiology , Adult , Antibody-Dependent Cell Cytotoxicity , Case-Control Studies , Chromatography, High Pressure Liquid , Complement Pathway, Mannose-Binding Lectin , Female , Glycosylation , Humans , Male , Middle Aged , Phenotype
17.
Front Immunol ; 12: 733418, 2021.
Article in English | MEDLINE | ID: covidwho-1450812

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and abnormal fatigability due to the antibodies against postsynaptic receptors. Despite the individual discrepancy, patients with MG share common muscle weakness, autoimmune dysfunction, and immunosuppressive treatment, which predispose them to infections that can trigger or exacerbate MG. Vaccination, as a mainstay of prophylaxis, is a major management strategy. However, the past years have seen growth in vaccine hesitancy, owing to safety and efficacy concerns. Ironically, vaccines, serving as an essential and effective means of defense, may induce similar immune cross-reactivity to what they are meant to prevent. Herein, we outline the progress in vaccination, review the current status, and postulate the clinical association among MG, vaccination, and immunosuppression. We also address safety and efficacy concerns of vaccination in MG, in relation to COVID-19. Since only a handful of studies have reported vaccination in individuals with MG, we further review the current clinical studies and guidelines in rheumatic diseases. Overall, our reviews offer a reference to guide future vaccine clinical decision-making and improve the management of MG patients.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , SARS-CoV-2/immunology , Autoimmunity/immunology , Humans , Immune Tolerance/immunology , Influenza Vaccines/immunology , Risk , Vaccination/adverse effects
18.
Front Immunol ; 12: 714177, 2021.
Article in English | MEDLINE | ID: covidwho-1444042

ABSTRACT

Sepsis continues to be a major cause of morbidity, mortality, and post-recovery disability in patients with a wide range of non-infectious and infectious inflammatory disorders, including COVID-19. The clinical onset of sepsis is often marked by the explosive release into the extracellular fluids of a multiplicity of host-derived cytokines and other pro-inflammatory hormone-like messengers from endogenous sources ("cytokine storm"). In patients with sepsis, therapies to counter the pro-inflammatory torrent, even when administered early, typically fall short. The major focus of our proposed essay is to promote pre-clinical studies with hCG (human chorionic gonadotropin) as a potential anti-inflammatory therapy for sepsis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chorionic Gonadotropin/therapeutic use , Peptides/therapeutic use , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Bacteria/metabolism , Chorionic Gonadotropin/chemistry , Chorionic Gonadotropin/metabolism , Cytokine Release Syndrome/drug therapy , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Inflammation , Peptides/chemistry , Peptides/metabolism
19.
Soc Sci Med ; 287: 114371, 2021 10.
Article in English | MEDLINE | ID: covidwho-1386626

ABSTRACT

At the initial stage of COVID-19 outbreak, tracing returnees from Wuhan - the epicenter of the disease - is a major strategy in each province of China to contain its spread. However, scholars are yet to assess the impact of tracing on individuals. Drawing upon a large-scale survey with students from four major universities in Wuhan, we investigate individual experiences with tracing activities at government and community levels and the impacts on students' socio-psychological wellbeing. Findings indicate that tracing is likely to increase the risks of privacy infringement, verbal slur, and warning at residence; and students experience moderate-to-high levels of anxiety and fear. Improved public health measures are therefore necessary to balance the twin goals of containing disease and alleviating unintended consequences of tracing.


Subject(s)
COVID-19 , Anxiety Disorders , China/epidemiology , Humans , SARS-CoV-2 , Students
20.
Mol Ther Methods Clin Dev ; 23: 108-118, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1379195

ABSTRACT

Because of the relatively limited understanding of coronavirus disease 2019 (COVID-19) pathogenesis, immunological analysis for vaccine development is needed. Mice and macaques were immunized with an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine prepared by two inactivators. Various immunological indexes were tested, and viral challenges were performed on day 7 or 150 after booster immunization in monkeys. This inactivated SARS-CoV-2 vaccine was produced by sequential inactivation with formaldehyde followed by propiolactone. The various antibody responses and specific T cell responses to different viral antigens elicited in immunized animals were maintained for longer than 150 days. This comprehensive immune response could effectively protect vaccinated macaques by inhibiting viral replication in macaques and substantially alleviating immunopathological damage, and no clinical manifestation of immunopathogenicity was observed in immunized individuals during viral challenge. This candidate inactivated vaccine was identified as being effective against SARS-CoV-2 challenge in rhesus macaques.

SELECTION OF CITATIONS
SEARCH DETAIL